参考文献/References:
[1] Elser J J, Fagan W F, Denno R F et al. Nutritional constraints in
terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):
578-580.
[2] 曾德慧,陈广生. 生态化学计量学:复杂生命系统奥秘的探索
[J]. 植物生态学报,2005,29(6):1007-1019.
[3] 王绍强,于贵瑞. 生态系统碳氮磷元素的生态化学计量学特
征[J].生态学报,2008,28(8):3937-3947.
[4] 朱秋莲,邢肖毅,张宏,等. 黄土丘陵沟壑区不同植被区土壤
生态化学计量特征[J]. 生态学报,2013,33(15):4674-4682.
[5] 邵梅香,覃林,谭玲. 我国生态化学计量学研究综述[J].安徽农
业科学,2012,40(11):6918-6920.
[6] Chadwick O A, Derry L A, Vitousek P M et al. Changing sources
of nutrients during four million years of ecosystem development
[J]. Nature, 1999, 397: 491-497.
[7] Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a
"Redfield ratio" for the microbial biomass? [J]. Biogeochemistry,
2007, 85(3): 235-252.
[8] Tian H Q, Chen G sh, Zhang Ch et al. Pattern and variation of C:
N:P ratios in China’s soils: a synthesis of observational data[J].
Biogeochemistry, 2010, 98 (1-3): 139-151.
[9] 刘丽娟. 高寒草甸火烧迹地恢复初期植物与土壤碳氮磷生态
化学计量研究[D].中国科学院成都生物研究所,2013.
[10] Ratnam J, Sankaran M, Hanan N P, et al. Nutrient resorption
pattern of plant functional groups in a tropical savanna: variation
and functional significance[J]. Oecologia, 2008, 157: 141-
151.
[11] Swift M J, Heal OW, Anderson J M. Decomposition in terrestrial
ecosystems[M].Oxford: Blackwell Scientific,-Studies in ecology,
1979, pp372.
[12] Paul E A. Part I: Soil microbiology, ecology, and biochemistry
in perspective[A]. In: Paul E A. Soil microbiology, ecology, and
biochemistry. Boston: Academic, Amsterdam, 2007, pp20.
[13] Rayment G E, Higginson F R. Australian laboratory handbook
of soil and water chemical methods[M]. Melbourne: Inkata in typical wetlands of the Yellow River Delta, China. Procedia
Environmental Sciences, 2010, 2: 1717-1726.
[19] Agren G I, Bosatta E. Theoretical ecosystem ecology: understanding
element cycles[M]. Cambridge: Cambridge University
Press, 1998: 234.
[20] 杨新芳,鲍雪莲,胡国庆,等. 大兴安岭不同火烧年限
森林凋落物和土壤C、N、P 化学计量特征[J]. 应用生态
学报,2016,27(5):1359-1367.
[21] 张晓曦. 石油污染及施氮修复对灌草枯落物分解及土
壤生物学性质的影响[D]. 咸阳:西北农林科技大学,
2017.
[22] Devi N L, Singh E J. Pattern of litterfall and return of nutrients
in five Oak species of mixed Oak forest of Manipur,
North- East India [J]. Journal of Applied and
Advanced Research, 2017, 2(1): 1-5
[23] 郗敏,李毛毛,陈婷,等. 胶州湾滨海湿地枯落物分解
过程中枯落物- 土壤养分动态[J]. 生态学杂志,2019,
38(04):1022-1030.
[24] 王晓光,乌云娜,宋彦涛,等. 土壤与植物生态化学计
量学研究进展[J]. 大连民族大学学报,2016,18(5):
437-422+449.
[25] 徐露燕. 湘潭锰矿区不同年龄栾树林土壤、根系和叶
片C、N、P 化学计量特征[D]. 长沙:中南林业科技大
学, 2014.
[26] 董凯凯,王惠,杨丽原,等. 人工恢复黄河三角洲湿地
土壤碳氮含量变化特征[J]. 生态学报,2011,31(16):
4778-4782.
[27] 高丽倩,赵允格,许明祥,等. 生物土壤结皮演替对土
壤生态化学计量特征的影响[J]. 生态学报,2017,38
(2):678-688.
[28] 张蕊,曹静娟,郭瑞英,等. 祁连山北坡亚高山草地退
耕还林草混合植被对土壤碳氮磷的影响[J]. 生态环境
学报,2014, 23(6): 938-944.
[29] 李亚玉. 光照对土壤有机质稳定性的影响[D]. 武汉:
华中农业大学,2015.
[30] 王维奇,曾从盛,钟春棋,等. 人类干扰对闽江河口湿
地土壤碳、氮、磷生态化学计量学特征的影响[J]. 环境
科学,2010,31(10):2411-2416.
[31] 张生楹,张德罡,刘小妮,等. 开垦利用对东祁连山高
寒灌丛草地土壤养分含量的影响[J]. 甘肃农业大学学
报,2012,47(02):80-84+ 90.
[32] 滕长才. 共和县农田土壤养分含量现状分析[J]. 现代
农业科技,2014,(4): 233-243.
[33] 张晗,欧阳真程,赵小敏,等. 不同利用方式对江西省
农田土壤碳氮磷生态化学计量特征的影响[J]. 环境科
学学报,2019,39(03):939-951.
[34] Bai Y F, Wu J G, Clark C M et al. Grazing alters ecosystem
functioning and C:N:P toichiometry of grasslands
along a regional precipitation gradient[J]. Journal of Applied
Ecology, 2012, 49: 1204-1215.
Press, 1992.
[14] Güsewell S, Verhoeven J T A. Litter N:P ratios indicate whether
N or P limits the decomposability of graminoid leaf litter[J].
Plant and Soil, 2006, 287(1-2):131-143.
[15] 陶冶,刘耀斌,吴甘霖,等.准噶尔荒漠区域尺度浅层土壤化
学计量特征及其空间分布格局[J]. 草业学报,2016,25(7):
13- 23.
[16] 屈凡柱,孟灵,付战勇,等.不同生境条件下滨海芦苇湿地C、
N、P 化学计量特征[J].生态学报,2018,38(5):1731-1738.
[17] 董芳辰,刘晓光,于杰,等.富锦市湿地不同开垦年限土壤养
分时空分布特征研究[J].干旱区资源与环境,2017,31(8):
167-174.
[18] Liu P P, Wang Q G, Bai J H, et al. Decomposition and return of
C and N of plant litters of Phragmites australis and Suaeda salsa